Provider Build With GPU

Use this guide and follow the sequential steps to build your Testnet Akash Provider with GPU support.

Prepare Kubernetes Hosts

Akash Providers utilize an underlying Kubernetes cluster. Begin your Akash Provider build by preparing the hosts that the Kubernetes cluster will be built on.

Follow the instructions in this guide to prepare the hosts. Complete steps 1-6 in the linked guide and then return to proceed with the steps of this Provider Build with GPU guide.

Disable Search Domains

Overview

In this section we perform the following DNS adjustments:

Set Use Domains to False
  • Set use-domains: false to prevent the possibility of systemd’s DHCP client overwriting the DNS search domain. This prevents a potentially bad domain served by the DHCP server from becoming active.
  • This is a common issue to some of the providers which is explained in more detail here
Set Accept RA to False
  • Set accept-ra: false to disable IPv6 Router Advertisement (RA) as the DNS search domain may still leak through if not disabled.
  • Potential issue this addresses is explained in more detail here

Create Netplan

NOTE - the DNS resolution issue & the Netplan fix addressed in this step are described here

Apply the following to all Kubernetes control plane and worker nodes.

IMPORTANT - Make sure you do not have any other config files under the /etc/netplan directory, otherwise it could cause unexpected networking issues / issues with booting up your node.

If you aren’t using the DHCP or want to add additional configuration, please refer to the netplan documentation here for additional config options.

Example

  • File: /etc/netplan/01-netcfg.yaml

Note that this is only an example of the netplan configuration file to show you how to disable the DNS search domain overriding and IPv6 Router Advertisement (RA). Do not blindly copy the entire config but rather use it as a reference for your convenience!

network:
version: 2
renderer: networkd
ethernets:
all:
match:
name: en*
dhcp4: yes
dhcp4-overrides:
use-domains: false
# disable accept-ra, otherwise it will bring search domains to your /etc/resolv.conf
# refs https://bugs.launchpad.net/netplan/+bug/1858503
accept-ra: false
optional: true

Test and Apply Netplan

Test the Netplan config and apply via these commands.

resolvectl domain
netplan try
netplan apply
resolvectl domain
Expected/Example Output
root@ip-172-31-18-188:~# resolvectl domain
Global:
Link 2 (eth0): us-east-2.compute.internal
root@ip-172-31-18-188:~# netplan try
Do you want to keep these settings?
Press ENTER before the timeout to accept the new configuration
Changes will revert in 111 seconds
Configuration accepted.
root@ip-172-31-18-188:~# netplan apply
root@ip-172-31-18-188:~# resolvectl domain
Global:
Link 2 (eth0): us-east-2.compute.internal

Install NVIDIA Drivers & Toolkit

NOTE - The steps in this section should be completed on all Kubernetes nodes hosting GPU resources

Prepare Environment

NOTE - reboot the servers following the completion of this step

apt update
DEBIAN_FRONTEND=noninteractive apt -y -o Dpkg::Options::="--force-confdef" -o Dpkg::Options::="--force-confold" dist-upgrade
apt autoremove

Install Latest NVIDIA Drivers

The ubuntu-drivers devices command detects your GPU and determines which version of the NVIDIA drivers is best.

NOTE - the NVIDIA drivers detailed and installed in this section have known compatibility issues with some 6.X Linux kernels as discussed here. In our experience, when such compatibility issue occur the driver will install with no errors generated but will not functionality properly. If you encounter Linux kernel and NVIDIA driver compatibility issues, consider downgrading the Kernel to the officially supported Ubuntu 22.04 kernel which at the time of this writing is 5.15.0-73

apt install ubuntu-drivers-common
ubuntu-drivers devices
Expected/Example Output
root@node1:~# ubuntu-drivers devices
== /sys/devices/pci0000:00/0000:00:1e.0 ==
modalias : pci:v000010DEd00001EB8sv000010DEsd000012A2bc03sc02i00
vendor : NVIDIA Corporation
model : TU104GL [Tesla T4]
driver : nvidia-driver-450-server - distro non-free
driver : nvidia-driver-418-server - distro non-free
driver : nvidia-driver-470-server - distro non-free
driver : nvidia-driver-515 - distro non-free
driver : nvidia-driver-510 - distro non-free
driver : nvidia-driver-525-server - distro non-free
driver : nvidia-driver-525 - distro non-free recommended
driver : nvidia-driver-515-server - distro non-free
driver : nvidia-driver-470 - distro non-free
driver : xserver-xorg-video-nouveau - distro free builtin
Driver Install Based on Output

Run either ubuntu-drivers autoinstall or apt install nvidia-driver-525 (driver names may be different in your environment).

The autoinnstall option installs the recommended version and is appropriate in most instances.

The apt install <driver-name>alternatively allows the install of preferred driver instead of the recommended version.

ubuntu-drivers autoinstall

Install the NVIDIA Container Toolkit

curl -s -L https://nvidia.github.io/libnvidia-container/gpgkey | apt-key add -
curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | tee /etc/apt/sources.list.d/libnvidia-container.list
apt-get update
apt-get install -y nvidia-container-toolkit nvidia-container-runtime

Additional References for Node Configurations

NOTE - references are for additional info only. No actions are necessary and the Kubernetes nodes should be all set to proceed to next step based on configurations enacted in prior steps on this doc.

NVIDIA Runtime Configuration

Worker nodes

IMPORTANT - This should be done on all worker nodes that have GPU installed!

Update the nvidia-container-runtime config in order to prevent NVIDIA_VISIBLE_DEVICES=all abuse where tenants could access more GPU’s than they requested.

NOTE - This will only work with nvdp/nvidia-device-plugin helm chart installed with --set deviceListStrategy=volume-mounts (you’ll get there in the next steps)

Make sure the config file /etc/nvidia-container-runtime/config.toml contains these line uncommmented and set to these values:

accept-nvidia-visible-devices-as-volume-mounts = true
accept-nvidia-visible-devices-envvar-when-unprivileged = false

NOTE - /etc/nvidia-container-runtime/config.toml is part of nvidia-container-toolkit-base package; so it won’t override the customer-set parameters there since it is part of the /var/lib/dpkg/info/nvidia-container-toolkit-base.conffiles

Kubespray

NOTE - This step should be completed on the Kubespray host only

In this step we add the NVIDIA runtime confguration into the Kubespray inventory. The runtime will be applied to necessary Kubernetes hosts when Kubespray builds the cluster in the subsequent step.

cat > ~/kubespray/inventory/akash/group_vars/all/akash.yml <<'EOF'
containerd_additional_runtimes:
- name: nvidia
type: "io.containerd.runc.v2"
engine: ""
root: ""
options:
BinaryName: '/usr/bin/nvidia-container-runtime'
EOF

Create Kubernetes Cluster

Create Cluster

NOTE - This step should be completed from the Kubespray host only

With inventory in place we are ready to build the Kubernetes cluster via Ansible.

NOTE - the cluster creation may take several minutes to complete

  • If the Kubespray process fails or is interpreted, run the Ansible playbook again and it will complete any incomplete steps on the subsequent run
cd ~/kubespray
source venv/bin/activate
ansible-playbook -i inventory/akash/hosts.yaml -b -v --private-key=~/.ssh/id_rsa cluster.yml

GPU Node Label (Kubernetes)

Each node that provides GPUs must be labeled correctly.

NOTE - these configurations should be completed on a Kubernetes control plane node

Label Template

  • Use this label template in the kubectl label command in the subsequent Label Appliction sub-section below

NOTE - please do not assign any value other than true to these labels. Setting the value to false may have unexpected consequences on the Akash provider. If GPU resources are removed from a node, simply remove the Kubernetes label completely from that node.

akash.network/capabilities.gpu.vendor.<vendor name>.model.<model name>=true

Label Application

Template

NOTE - if you are unsure of the <node-name> to be used in this command - issue kubectl get nodes from one of your Kubernetes control plane nodes to obtain via the NAME column of this command output

kubectl label node <node-name> <label>
Example

NOTE - issue this command/label application for all nodes hosting GPU resources

kubectl label node node1 akash.network/capabilities.gpu.vendor.nvidia.model.a4000=true
Expected Output using Example
###Apply labels
root@node1:~/provider# kubectl label node node1 akash.network/capabilities.gpu.vendor.nvidia.model.a4000=true
node/node1 labeled
###Verification of applied labels
root@node1:~/provider# kubectl describe node node1 | grep -A10 Labels
Labels: akash.network/capabilities.gpu.vendor.nvidia.model.a4000=true
...
...

Additional Kubernetes Configurations

NOTE - these configurations should be completed on a Kubernetes control plane node

kubectl create ns akash-services
kubectl label ns akash-services akash.network/name=akash-services akash.network=true
kubectl create ns lease
kubectl label ns lease akash.network=true

Confirm Kubernetes Cluster

A couple of quick Kubernetes cluster checks are in order before moving into next steps.

SSH into Kubernetes Master Node

NOTE - the verifications in this section must be completed on a master node with Kubectl access to the cluster.

Confirm Kubernetes Nodes

kubectl get nodes

Example output from a healthy Kubernetes cluster

root@node1:~# kubectl get nodes
NAME STATUS ROLES AGE VERSION
node1 Ready control-plane 18m v1.25.6
node2 Ready <none> 17m v1.25.6
node3 Ready <none> 17m v1.25.6

Confirm Kubernetes Pods

kubectl get pods -n kube-system

Example output of the pods that are the brains of the cluster

root@node1:~# kubectl get pods -n kube-system
NAME READY STATUS RESTARTS AGE
calico-kube-controllers-75748cc9fd-vv84p 1/1 Running 0 17m
calico-node-ns4ps 1/1 Running 0 17m
calico-node-ttwzt 1/1 Running 0 17m
calico-node-wxlsj 1/1 Running 0 17m
coredns-588bb58b94-hbk94 1/1 Running 0 17m
coredns-588bb58b94-vr8j5 1/1 Running 0 17m
dns-autoscaler-5b9959d7fc-g4jmj 1/1 Running 0 17m
kube-apiserver-node1 1/1 Running 1 19m
kube-controller-manager-node1 1/1 Running 1 19m
kube-proxy-6vs5w 1/1 Running 0 18m
kube-proxy-czqfr 1/1 Running 0 18m
kube-proxy-k52bw 1/1 Running 0 18m
kube-scheduler-node1 1/1 Running 1 19m
nginx-proxy-node2 1/1 Running 0 17m
nginx-proxy-node3 1/1 Running 0 18m
nodelocaldns-75mn2 1/1 Running 0 17m
nodelocaldns-cj6gq 1/1 Running 0 17m
nodelocaldns-tnkmd 1/1 Running 0 17m

Verify etcd Status and Health

Commands should be run on the control plane node to ensure health of the Kubernetes etcd database

export $(grep -v '^#' /etc/etcd.env | xargs -d '\n')
etcdctl -w table member list
etcdctl endpoint health --cluster -w table
etcdctl endpoint status --cluster -w table
etcdctl check perf

Example/Expected Output of etcd Health Check

root@node1:~# export $(grep -v '^#' /etc/etcd.env | xargs -d '\n')
root@node1:~# etcdctl -w table member list
+------------------+---------+-------+--------------------------+--------------------------+------------+
| ID | STATUS | NAME | PEER ADDRS | CLIENT ADDRS | IS LEARNER |
+------------------+---------+-------+--------------------------+--------------------------+------------+
| e9bba4ecf3734bea | started | etcd1 | https://10.128.0.21:2380 | https://10.128.0.21:2379 | false |
+------------------+---------+-------+--------------------------+--------------------------+------------+
root@node1:~# etcdctl endpoint health --cluster -w table
+--------------------------+--------+-------------+-------+
| ENDPOINT | HEALTH | TOOK | ERROR |
+--------------------------+--------+-------------+-------+
| https://10.128.0.21:2379 | true | 11.767326ms | |
+--------------------------+--------+-------------+-------+
root@node1:~# etcdctl endpoint status --cluster -w table
+--------------------------+------------------+---------+---------+-----------+------------+-----------+------------+--------------------+--------+
| ENDPOINT | ID | VERSION | DB SIZE | IS LEADER | IS LEARNER | RAFT TERM | RAFT INDEX | RAFT APPLIED INDEX | ERRORS |
+--------------------------+------------------+---------+---------+-----------+------------+-----------+------------+--------------------+--------+
| https://10.128.0.21:2379 | e9bba4ecf3734bea | 3.5.6 | 7.7 MB | true | false | 3 | 3348 | 3348 | |
+--------------------------+------------------+---------+---------+-----------+------------+-----------+------------+--------------------+--------+
root@node1:~# etcdctl check perf
59 / 60 Booooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooom ! 98.33%PASS: Throughput is 150 writes/s
PASS: Slowest request took 0.011899s
PASS: Stddev is 0.000805s
PASS

Helm Installation on Kubernetes Node

NOTE - conduct these steps from one of the Kubernetes control plane/master nodes

Helm Install

wget https://get.helm.sh/helm-v3.11.2-linux-amd64.tar.gz
tar -zxvf helm-v3.11.2-linux-amd64.tar.gz
install linux-amd64/helm /usr/local/bin/
rm -rf helm-v3.11.2-linux-amd64.tar.gz linux-amd64
helm repo add nvdp https://nvidia.github.io/k8s-device-plugin
helm repo add akash https://akash-network.github.io/helm-charts
helm repo update

Confirmation of Helm Install

Print Helm Version

helm version

Expected Output

# helm version
version.BuildInfo{Version:"v3.11.2", GitCommit:"472c5736ab01133de504a826bd9ee12cbe4e7904", GitTreeState:"clean", GoVersion:"go1.18.10"}

Apply NVIDIA Runtime Engine

NOTE - conduct these steps on the control plane node that Helm was installed on via the previous step

Create RuntimeClass

Create the NVIDIA Runtime Config
cat > nvidia-runtime-class.yaml << EOF
kind: RuntimeClass
apiVersion: node.k8s.io/v1
metadata:
name: nvidia
handler: nvidia
EOF
Apply the NVIDIA Runtime Config
kubectl apply -f nvidia-runtime-class.yaml

Upgrade/Install the NVIDIA Device Plug In Via Helm - GPUs on All Nodes

NOTE - in some scenarios a provider may host GPUs only on a subset of Kubernetes worker nodes. Use the instructions in this section if ALL Kubernetes worker nodes have available GPU resources. If only a subset of worker nodes host GPU resources - use the section Upgrade/Install the NVIDIA Device Plug In Via Helm - GPUs on Subset of Nodes instead. Only one of these two sections should be completed.

helm upgrade -i nvdp nvdp/nvidia-device-plugin \
--namespace nvidia-device-plugin \
--create-namespace \
--version 0.16.2 \
--set runtimeClassName="nvidia" \
--set deviceListStrategy=volume-mounts
Expected/Example Output
root@ip-172-31-8-172:~# helm upgrade -i nvdp nvdp/nvidia-device-plugin \
--namespace nvidia-device-plugin \
--create-namespace \
--version 0.16.2 \
--set runtimeClassName="nvidia" \
--set deviceListStrategy=volume-mounts
Release "nvdp" does not exist. Installing it now.
NAME: nvdp
LAST DEPLOYED: Thu Apr 13 19:11:28 2023
NAMESPACE: nvidia-device-plugin
STATUS: deployed
REVISION: 1
TEST SUITE: None

Upgrade/Install the NVIDIA Device Plug In Via Helm - GPUs on Subset of Nodes

NOTE - use the instructions in this section if only a subset of Kubernetes worker nodes have available GPU resources.

  • By default, the nvidia-device-plugin DaemonSet may run on all nodes in your Kubernetes cluster. If you want to restrict its deployment to only GPU-enabled nodes, you can leverage Kubernetes node labels and selectors.
  • Specifically, you can use the allow-nvdp=true label to limit where the DaemonSet is scheduled.
STEP 1: Label the GPU Nodes
  • First, identify your GPU nodes and label them with allow-nvdp=true. You can do this by running the following command for each GPU node
  • Replace node-name of the node you’re labeling

NOTE - if you are unsure of the <node-name> to be used in this command - issue kubectl get nodes from one of your Kubernetes control plane nodes to obtain via the NAME column of this command output

kubectl label nodes <node-name> allow-nvdp=true
STEP 2: Update Helm Chart Values
  • By setting the node selector, you are ensuring that the nvidia-device-plugin DaemonSet will only be scheduled on nodes with the allow-nvdp=true label.
helm upgrade -i nvdp nvdp/nvidia-device-plugin \
--namespace nvidia-device-plugin \
--create-namespace \
--version 0.16.2 \
--set runtimeClassName="nvidia" \
--set deviceListStrategy=volume-mounts \
--set-string nodeSelector.allow-nvdp="true"
STEP 3: Verify
kubectl -n nvidia-device-plugin get pods -o wide

Expected/Example Output

  • In this example only nodes: node1, node3 and node4 have the allow-nvdp=true labels and that’s where nvidia-device-plugin pods spawned at:
root@node1:~# kubectl -n nvidia-device-plugin get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
nvdp-nvidia-device-plugin-gqnm2 1/1 Running 0 11s 10.233.75.1 node2 <none> <none>

Verification - Applicable to all Environments

kubectl -n nvidia-device-plugin logs -l app.kubernetes.io/instance=nvdp
Example/Expected Output
root@node1:~# kubectl -n nvidia-device-plugin logs -l app.kubernetes.io/instance=nvdp
"sharing": {
"timeSlicing": {}
}
}
2023/04/14 14:18:27 Retreiving plugins.
2023/04/14 14:18:27 Detected NVML platform: found NVML library
2023/04/14 14:18:27 Detected non-Tegra platform: /sys/devices/soc0/family file not found
2023/04/14 14:18:27 Starting GRPC server for 'nvidia.com/gpu'
2023/04/14 14:18:27 Starting to serve 'nvidia.com/gpu' on /var/lib/kubelet/device-plugins/nvidia-gpu.sock
2023/04/14 14:18:27 Registered device plugin for 'nvidia.com/gpu' with Kubelet
"sharing": {
"timeSlicing": {}
}
}
2023/04/14 14:18:29 Retreiving plugins.
2023/04/14 14:18:29 Detected NVML platform: found NVML library
2023/04/14 14:18:29 Detected non-Tegra platform: /sys/devices/soc0/family file not found
2023/04/14 14:18:29 Starting GRPC server for 'nvidia.com/gpu'
2023/04/14 14:18:29 Starting to serve 'nvidia.com/gpu' on /var/lib/kubelet/device-plugins/nvidia-gpu.sock
2023/04/14 14:18:29 Registered device plugin for 'nvidia.com/gpu' with Kubelet

Test GPUs

NOTE - conduct the steps in this section on a Kubernetes control plane node

Launch GPU Test Pod

Create the GPU Test Pod Config
cat > gpu-test-pod.yaml << EOF
apiVersion: v1
kind: Pod
metadata:
name: gpu-pod
spec:
restartPolicy: Never
runtimeClassName: nvidia
containers:
- name: cuda-container
# Nvidia cuda compatibility https://docs.nvidia.com/deploy/cuda-compatibility/
# for nvidia 510 drivers
## image: nvcr.io/nvidia/k8s/cuda-sample:vectoradd-cuda10.2
# for nvidia 525 drivers use below image
image: nvcr.io/nvidia/k8s/cuda-sample:vectoradd-cuda11.6.0
resources:
limits:
nvidia.com/gpu: 1 # requesting 1 GPU
tolerations:
- key: nvidia.com/gpu
operator: Exists
effect: NoSchedule
EOF
Apply the GPU Test Pod Config
kubectl apply -f gpu-test-pod.yaml

Verification of GPU Pod

kubectl logs gpu-pod
Expected/Example Output
root@node1:~# kubectl logs gpu-pod
[Vector addition of 50000 elements]
Copy input data from the host memory to the CUDA device
CUDA kernel launch with 196 blocks of 256 threads
Copy output data from the CUDA device to the host memory
Test PASSED
Done

Akash Provider Install

NOTE - all steps in this guide should be performed from a Kubernetes control plane node

Install Akash Provider Services Binary

wget https://github.com/akash-network/provider/releases/download/v0.4.6/provider-services_0.4.6_linux_amd64.zip
unzip provider-services_0.4.6_linux_amd64.zip
install provider-services /usr/local/bin/
rm provider-services provider-services_0.4.6_linux_amd64.zip

Confirm Akash Provider Services Install

  • Issue the following command to confirm successful installation of the binary:
provider-services version
Expected/Example Output
root@node1:~# provider-services version
v0.4.6

Specify Provider Account Keyring Location

export AKASH_KEYRING_BACKEND=test

Create Provider Account

The wallet created in this step used will be used for the following purposes:

  • Pay for provider transaction gas fees
  • Pay for bid collateral which is discussed further in this section

NOTE - Make sure to create a new Akash account for the provider and do not reuse an account used for deployment purposes. Bids will not be generated from your provider if the deployment orders are created with the same key as the provider.

NOTE - capture the mnemonic phrase for the account to restore later if necessary

NOTE - in the provided syntax we are creating an account with the key name of default

provider-services keys add default

Fund Provider Account via Faucet

Ensure that the provider account - created in the prior step - is funded. Avenues to fund an account are discussed in this document.

Export Provider Key for Build Process

STEP 1 - Export Provider Key

  • Enter pass phrase when prompted
  • The passphrase used will be needed in subsequent steps
cd ~
provider-services keys export default
Expected/Example Output
provider-services keys export default
Enter passphrase to encrypt the exported key:
Enter keyring passphrase:
-----BEGIN TENDERMINT PRIVATE KEY-----
kdf: bcrypt
salt: REDACTED
type: secp256k1
REDACTED
-----END TENDERMINT PRIVATE KEY-----

STEP 2 - Create key.pem and Copy Output Into File

  • Copy the contents of the prior step into the key.pem file

NOTE - file should contain only what’s between -----BEGIN TENDERMINT PRIVATE KEY----- and -----END TENDERMINT PRIVATE KEY----- (including the BEGIN and END lines):

vim key.pem
Verification of key.pem File
cat key.pem
Expected/Example File
cat key.pem
-----BEGIN TENDERMINT PRIVATE KEY-----
kdf: bcrypt
salt: REDACTED
type: secp256k1
REDACTED
-----END TENDERMINT PRIVATE KEY-----

Provider RPC Node

Akash Providers need to run their own blockchain RPC node to remove dependence on public nodes. This is a strict requirement.

We have recently released documentation guiding thru the process of building a RPC node via Helm Charts with state sync.

Declare Relevant Environment Variables

  • Update RPC-NODE-ADDRESS with your own value
export AKASH_CHAIN_ID=akashnet-2
export AKASH_NODE=<RPC-NODE-ADDRESS>
export AKASH_GAS=auto
export AKASH_GAS_PRICES=0.025uakt
export AKASH_GAS_ADJUSTMENT=1.5
  • Update the following variables with your own values
  • The KEY_PASSWORD value should be the passphrase of used during the account export step
  • Further discussion of the Akash provider domain is available here
export ACCOUNT_ADDRESS=<AKASH_PROVIDER_ADDRESS>
export KEY_PASSWORD=<PASSPHASE>
export DOMAIN=<PROVIDER_DOMAIN>

Create Provider Configuration File

  • Providers must be updated with attributes in order to bid on the GPUs.

GPU Attributes Template

  • GPU model template is used in the subsequent Provider Configuration File
  • Multiple such entries should be included in the Provider Configuration File if the providers has multiple GPU types
  • Currently Akash providers may only host one GPU type per worker node. But different GPU models/types may be hosted on separate Kubernetes nodes.
capabilities/gpu/vendor/<vendor name>/model/<model name>: true

Example Provider Configuration File

  • In the example configuration file below the Akash Provider will advertise availability of NVIDIA GPU model A4000
  • Steps included in this code block create the necessary provider.yaml file in the expected directory
  • Ensure that the attributes section is updated witih your own values
cd ~
mkdir provider
cd provider
cat > provider.yaml << EOF
---
from: "$ACCOUNT_ADDRESS"
key: "$(cat ~/key.pem | openssl base64 -A)"
keysecret: "$(echo $KEY_PASSWORD | openssl base64 -A)"
domain: "$DOMAIN"
node: "$AKASH_NODE"
withdrawalperiod: 12h
attributes:
- key: host
value: akash
- key: tier
value: community
- key: capabilities/gpu/vendor/nvidia/model/a4000
value: true
EOF

Provider Bid Defaults

  • When a provider is created the default bid engine settings are used which are used to derive pricing per workload. If desired these settings could be updated. But we would recommend initially using the default values.
  • For a through discussion on customized pricing please visit this guide.

Create Provider Via Helm

export CRDS="manifests.akash.network providerhosts.akash.network providerleasedips.akash.network"
kubectl delete crd $CRDS
kubectl apply -f https://raw.githubusercontent.com/akash-network/provider/v0.4.6/pkg/apis/akash.network/crd.yaml
for CRD in $CRDS; do
kubectl annotate crd $CRD helm.sh/resource-policy=keep
kubectl annotate crd $CRD meta.helm.sh/release-name=akash-provider
kubectl annotate crd $CRD meta.helm.sh/release-namespace=akash-services
kubectl label crd $CRD app.kubernetes.io/managed-by=Helm
done
helm upgrade --install akash-provider akash/provider -n akash-services -f provider.yaml \
--set bidpricescript="$(cat /root/provider/price_script_generic.sh | openssl base64 -A)"
Verification
  • Verify the image is correct by running this command:
kubectl -n akash-services get pod akash-provider-0 -o yaml | grep image: | uniq -c
Expected/Example Output
root@node1:~/provider# kubectl -n akash-services get pod akash-provider-0 -o yaml | grep image: | uniq -c
4 image: ghcr.io/akash-network/provider:0.4.6

Create Akash Hostname Operator

helm upgrade --install akash-hostname-operator akash/akash-hostname-operator -n akash-services

Verify Health of Akash Provider

  • Use the following command to verify the health of the Akash Provider and Hostname Operator pods
kubectl get pods -n akash-services
Example/Expected Output
root@node1:~/provider# kubectl get pods -n akash-services
NAME READY STATUS RESTARTS AGE
akash-hostname-operator-5c59757fcc-kt7dl 1/1 Running 0 17s
akash-provider-0 1/1 Running 0 59s

Ingress Controller Install

Create Upstream Ingress-Nginx Config

  • Create an ingress-nginx-custom.yaml file
vim ingress-nginx-custom.yaml
  • Populate the ingress-nginx-custom.yamlfile with the following contents:
controller:
service:
type: ClusterIP
ingressClassResource:
name: "akash-ingress-class"
kind: DaemonSet
hostPort:
enabled: true
admissionWebhooks:
port: 7443
config:
allow-snippet-annotations: false
compute-full-forwarded-for: true
proxy-buffer-size: "16k"
metrics:
enabled: true
extraArgs:
enable-ssl-passthrough: true
tcp:
"8443": "akash-services/akash-provider:8443"

Install Upstream Ingress-Nginx

helm repo add ingress-nginx https://kubernetes.github.io/ingress-nginx
helm upgrade --install ingress-nginx ingress-nginx/ingress-nginx \
--version 4.10.1 \
--namespace ingress-nginx --create-namespace \
-f ingress-nginx-custom.yaml

Apply Necessary Labels

  • Label the ingress-nginx namespace and the akash-ingress-class ingress class
kubectl label ns ingress-nginx app.kubernetes.io/name=ingress-nginx app.kubernetes.io/instance=ingress-nginx
kubectl label ingressclass akash-ingress-class akash.network=true

Domain Name Review

Overview

Add DNS (type A) records for your Akash Provider related domains on your DNS hosting provider.

Akash Provider Domain Records

  • Replace yourdomain.com with your own domain name
  • DNS (type A) records should point to public IP address of a single Kubernetes worker node of your choice
*.ingress.yourdomain.com
provider.yourdomain.com

NOTE - do not use Cloudflare or any other TLS proxy solution for your Provider DNS A records.

NOTE - Instead of the multiple DNS A records for worker nodes, consider using CNAME DNS records such as the example provided below. CNAME use allows ease of management and introduces higher availability.


*.ingress 300 IN CNAME nodes.yourdomain.com.
nodes 300 IN A x.x.x.x
nodes 300 IN A x.x.x.x
nodes 300 IN A x.x.x.x
provider 300 IN CNAME nodes.yourdomain.com.

Example DNS Configuration

GPU Test Deployments

Overview

Test your provider’s ability to host GPU related deployments via the SDLs provided in this section.

Use any of the Akash deployment tools covered here for your Provider test deployments.

NOTE - this section covers GPU specific deployment testing and verificaiton of your Akash Provider. In addition, general Provider verifications can be made via this Provider Checkup guide.

Example GPU SDL #1

NOTE - in this example the deployer is requesting bids from only Akash Providers that have available NVIDIA A4000 GPUs. Adjust accordingly for your provider testing.

---
version: "2.0"
services:
gpu-test:
# Nvidia cuda compatibility https://docs.nvidia.com/deploy/cuda-compatibility/
# for nvidia 510 drivers
## image: nvcr.io/nvidia/k8s/cuda-sample:vectoradd-cuda10.2
# for nvidia 525 drivers use below image
image: nvcr.io/nvidia/k8s/cuda-sample:vectoradd-cuda11.6.0
command:
- "sh"
- "-c"
args:
- 'sleep infinity'
expose:
- port: 3000
as: 80
to:
- global: true
profiles:
compute:
gpu-test:
resources:
cpu:
units: 1
memory:
size: 1Gi
gpu:
units: 1
attributes:
vendor:
nvidia:
- model: a4000
storage:
- size: 512Mi
placement:
westcoast:
pricing:
gpu-test:
denom: uakt
amount: 100000
deployment:
gpu-test:
westcoast:
profile: gpu-test
count: 1

Testing of Deployment/GPU Example #1

Conduct the following tests from the deployment’s shell.

Test 1
/tmp/sample
Expected/Example Output
root@gpu-test-6d4f545b6f-f95zk:/# /tmp/sample
[Vector addition of 50000 elements]
Copy input data from the host memory to the CUDA device
CUDA kernel launch with 196 blocks of 256 threads
Copy output data from the CUDA device to the host memory
Test PASSED
Done
Test 2
nvidia-smi
Expected/Example Output
root@gpu-test-6d4f545b6f-f95zk:/# nvidia-smi
Fri Apr 14 09:23:33 2023
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 525.85.12 Driver Version: 525.85.12 CUDA Version: 12.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 NVIDIA RTX A4000 Off | 00000000:05:00.0 Off | Off |
| 41% 44C P8 13W / 140W | 0MiB / 16376MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
root@gpu-test-6d4f545b6f-f95zk:/#

Example GPU SDL

NOTE - there is currently an issue with GPU deployments closing once their primary process completes. Due to this issue the example SDL below causes repeated container resarts. The container will restart when the stable diffusion task has completed. When this issue has been resolved, GPU containers will remain running perpetually and will not close when the primary process defined in the SDL completes.

NOTE - the CUDA version necessary for this image is 11.7 currently. Check the image documentation page here for possible updates.

NOTE - in this example the deployer is requesting bids from only Akash Providers that have available NVIDIA A4000 GPUs

---
version: "2.0"
services:
gpu-test:
image: ghcr.io/fboulnois/stable-diffusion-docker
expose:
- port: 3000
as: 80
to:
- global: true
cmd:
- run
args:
- 'An impressionist painting of a parakeet eating spaghetti in the desert'
- --attention-slicing
- --xformers-memory-efficient-attention
profiles:
compute:
gpu-test:
resources:
cpu:
units: 1
memory:
size: 20Gi
gpu:
units: 1
attributes:
vendor:
nvidia:
- model: a4000
storage:
- size: 100Gi
placement:
westcoast:
pricing:
gpu-test:
denom: uakt
amount: 100000
deployment:
gpu-test:
westcoast:
profile: gpu-test
count: 1
footer-logo-dark

© Akash Network 2025 The Akash Network Authors Documentation Distributed under CC BY 4.0

Open-source Apache 2.0 Licensed.

GitHub v0.20.0

Privacy